Lucija Jukić Soršak, Gorazd Soršak, Renata Toplak, David Bevk, Jurij Svete*, and Branko Stanovnik*

Faculty of Chemistry and Chemical Technology, University of Ljubljana
Aškerčeva 5, 1000 Ljubljana, Slovenia
e-mail: jurij.svete@fkkt.uni-lj.si; branko.stanovnik@fkkt.uni-lj.si Received November 3, 2005

Dedicated to Professor Dr. Miha Tišler, Professor Emeritus of the University of Ljubljana, on the occasion of his 80th anniversary

Abstract

In this paper the regiospecific transformations of methyl 2-(benzyloxycarbonyl)amino-3-dimethylaminopropenoate (1) with hydrazine, alkyl-, aryl- and heteroaryl-substituted hydrazines via the corresponding hydrazones 12-16 into pyrazoles 17-25 are described. Heteroaryl-substitued hydrazones 13-16 afforded by oxidation with bromine or lead tetraacetate the corresponding substituted (1,2,4-triazolo[4,3-b]pyridazin-3yl)glycinates 27-30. Alkyl 2-(2,2-disubstituted-1-ethenyl)amino-3-dimethylaminopropenoates 31-33 gave with hydrazines alkyl 2-[2,2-(disubstituted)ethenyl]amino-3-heteroarylhydrazonopropanoates 40-48 and 2alkyl 2,3-bis((hetero)arylhydrazono) propanoates 51-55.

J. Heterocyclic Chem., 43, 1205 (2006).

Introduction.
Pyrazole and its derivatives are an important class of compounds since they have been claimed to be effective as germicides, antimicrobial agents, analgesics, antipyretics and antifungals [1-3]. Numerous methods for the synthesis of substituted pyrazoles are known [2-5]. One of the most frequently utilized methods is the reaction of 1,3-dicarbonyl compounds, or equivalent 1,3-bis-electrophilic reagents, with hydrazine or its derivatives. However, in the case of substituted hydrazines this type of reaction frequently results in mixtures of regioisomeric pyrazoles [6]. On the other hand, the reaction of substituted hydrazines with α, β unsaturated ketones has been reported to lead to regioselective formation of pyrazolines which could be easily oxidized to the corresponding pyrazoles $[7,8]$. Several other methods for the regioselective synthesis of pyrazoles have also been published [9,10]. Hydrazines readily react with acetylenic ketones to afford pyrazoles directly [11,12]. Recently, regiospecific synthesis of 1,3,5-trisunstituted pyrazoles from acetylenic ketones and hydrazines has been reported [13].

Alkyl 2-substituted 3-(dimethylamino)propenoates and related enaminones have been used for the preparation of dihydroalanine esters and various
heterocyclic systems [14], including some indole alkaloids, such as aplysinopsins and their analogs [1518] and meridianins and their analogs [19]. Recently, applications of 3-(dimethylamino)propenoates in combinatorial synthesis have also been reported [20-22]. In several instances, substituted pyrazoles have been obtained in the reactions with hydrazines [23-30].

In this paper, the regiospecific transformations of methyl 2-(benzyloxycarbonyl)amino-3-dimethylaminopropenoate (1) with hydrazine, alkyl-, aryl- and heteroaryl-substituted hydrazines via the corresponding hydrazones 12-16 into pyrazoles 17-25. Heteroaryl-substitued hydrazones 13-16 afforded by oxidation with bromine or lead tetraacetate the corresponding substituted (1,2,4-triazolo[4,3-b]pyridazin-3-yl)glycinates 27-30. Alkyl 2-(2,2-disubstituted-1-ethenyl)amino-3-dimethylaminopropenoates 31-33 gave with hydrazines alkyl 2,3-bis((hetero)arylhydrazono)propenoates 51-55.
Results and Discussion.
When a mixture of 2-(benzyloxycarbonyl)amino-3dimethylaminopropenoate (1) was stirred with an equivalent amount of heteroarylhydrazines 2-11 in ethanol in the presence of catalytic amount of hydrochloric acid at room temperature for several hours, the corresponding propenoates $\mathbf{1 2 - 1 6}$ were formed in 52-
97% yield. They exist as a mixture of enehydrazino 12a-16a and hydrazono derivatives 12b-16b. The ratios between both forms were determined by ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra. When compound $\mathbf{1}$ was heated with hydrazine hydrate (2) in ethanol for three hours the corresponding 4-(benzyl-oxycarbonyl)amino-1 H -pyraz-ol-5(2 H)-one (17) was
directly from $\mathbf{1}$ and the corresponding heteroarylhydrazine $\mathbf{8}$ or $\mathbf{1 0}$ by stirring at room temperature for several hours to form hydrazones $\mathbf{1 3}$ or $\mathbf{1 5}$ as intermediates, which were cyclized without isolation with bromine in methanol in the presence of sodium acetate to give compounds 27 and 29. The hydrazone 14 yields

Scheme 1

obtained in 79% yield. Similarly, alkylhydrazines 3 and 4 and arylhydrazines 5-7 gave in the presence of catalytic amounts of hydrochloric acid the corresponding 4-(benzyloxycarbonyl)amino-1-alkyl- and -1-aryl-1 H -pyrazol$5(2 H)$-ones $17-21$ in $29-63 \%$ yields. On the other hand, heterocyclic hydrazines $\mathbf{8 - 1 1}$ were heated in ethanol or methanol in the presence of triethylamine for 10 minutes to two hours to afford the corresponding 4-(benzyl-oxycarbonyl)amino-1-heteroaryl-1 H -pyrazol-5(2H)-ones $\mathbf{2 3 - 2 5}$ in 61-79 \% yields. When compound 17, dissolved in a mixture of acetic acid and acetic anhydride, was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}$ at room temperature for 12 hours, 2-acetyl-4-acetylamino- 1 H -pyrazol-5(2H)-one was isolated, indicating that the benzyloxycarbonyl group was removed from the amino group followed by acetylation of the free amino group at 4-position and endocyclic NH group at 2-position.

Methyl N-(benzyloxycarbonyl)amino-(1,2,4-triazolo-[4,3-x]azin-3-yl)glycinates 27-30 were prepared either
under the same reaction conditions compound 28. Instead of bromine lead tetraacetate in dichloromethane was used as oxidizing agent, according to the procedures described earlier for preparation of various [1,2,4]triazolo[4,3b]pyridazines [31-35]. In this manner, hydrazones 14 and 16 were transformed into 28 and $\mathbf{3 0}$ (Scheme 1).
Another group of hydrazones was prepared from alkyl 2-[2,2-(disubstituted)ethenyl]amino-3-(dimethylamino)propenoates 31-34. When compounds 31-34 reacted with heteroarylhydrazines 9 and 36-39 in ethanol in the presence of catalytic amounts of hydrochloric acid at room temperature, the corresponding hydrazones 40-48 were isolated. Compound 46 was prepared also from 2-[2-ethoxycarbonyl-2-(pyridin-2-yl)amino]-3-hydroxypropenoate hydrochloride (35) and 6-chloro-3-hydrazinopyridazine (9) in 59% yield (Scheme 2).
Treatment of alkyl 2-[2,2-(disubstituted)ethenyl]-amino-3-(dimethylamino)propenoates $\mathbf{3 1 - 3 3}$ with

Scheme 2

heteroarylhydrazines $\mathbf{5}, \mathbf{8}, \mathbf{4 9}$, and $\mathbf{5 0}$ in ethanol in the presence of hydrochloric acid at room temperature for several hours afforded alkyl-2,3-bis(heteroarylhydrazono) propanoates 51-55 in 17-60 \% yields. (Scheme 3).
techniques and are given in Table 2 . On the other hand, compounds 40-48 exist exclusively in hydrazone forms 40b-48b. The structures of pyrazolone derivatives 17-25 are unambiguous since the compounds obtained by treatment of

Scheme 3

$51\left(\mathrm{R}_{2}=\right.$ COOEt, $\mathrm{R}_{3}=$ phenyl, $\left.\mathrm{R}_{4}=\mathrm{H}\right)$
$52\left(\mathrm{R}_{2}=\right.$ COOEt, $\mathrm{R}_{3}=$ pyridin- 2 -yl, $\mathrm{R} 4=\mathrm{H}$)
$53\left(\mathrm{R}_{2}=\right.$ COOEt, $\mathrm{R}_{3}=4$-methylphenyl, $\left.\mathrm{R}_{4}=\mathrm{H}\right)$
$54\left(\mathrm{R}_{2}=\mathrm{COOMe}, \mathrm{R}_{3}=\right.$ pyridin- 2 - yl, $\left.\mathrm{R}_{4}=\mathrm{H}\right)$
$55\left(\mathrm{R}_{2}=\right.$ COOMe, $\mathrm{R}_{3}=$ phenyl, $\left.\mathrm{R}_{4}=\mathrm{Me}\right)$

The structures of new compounds were determined by spectroscopic methods and by analysis for C, H, and N . Compounds 12-16 exist in dimethyl sulfoxide- d_{6} solution in equilibria between hydrazine forms 12a-16a and hydrazone forms $\mathbf{1 2 b} \mathbf{- 1 6 b}$. The ratios were determined by ${ }^{1} \mathrm{H} \mathrm{nmr}$
compound 1 with hydrazine of monosubstituted hydrazine 2-11 (Method A) are identical with compounds obtained by cyclisation of hydrazones 12-16 as intermediates (Method B). No attempts were made in order to determine the tautomeric form of pyrazolone part of the molecule.

Table 1
Experimental and Analytical Data
\(\left.$$
\begin{array}{llll}\text { Compound } & \begin{array}{l}\text { Yield } \\
(\%)\end{array} & \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) & \begin{array}{l}\text { Molecular formula } \\
\text { Analyses }\end{array} \\
\mathbf{1 2} & 55 & \begin{array}{l}164-167 \\
\text { from ethanol }\end{array} & \begin{array}{l}\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{6} \\
\text { Calcd: } \mathrm{C}, 55.96 ; \mathrm{H}, 4.70 ; \mathrm{N}, 14.50\end{array} \\
\mathbf{1 3} & 80 & \begin{array}{l}114-117 \\
\text { from methanol/water }\end{array} & \begin{array}{l}\text { Found: } \mathrm{C}, 55.82 ; \mathrm{H}, 4.89 ; \mathrm{N}, 14.24\end{array}
$$

\& \& \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}\end{array}\right]\)| Calcd: $\mathrm{C}, 59.64 ; \mathrm{H}, 5.30 ; \mathrm{N}, 16.37$ |
| :--- |

Table 1 (continued)

Compound	Yield (\%)	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Molecular formula Analyses	MS
14	97	$161-163$ from methanol/water	$\begin{aligned} & \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}_{4} \\ & \text { Calcd: C, } 50.87 ; \mathrm{H}, 4.27 ; \mathrm{N}, 18.54 \\ & \text { Found:C, } 50.79 ; \mathrm{H}, 4.17 ; \mathrm{N}, 18.63 \end{aligned}$	-
15	78	188-190 from methanol/water	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ Calcd: C, 63.00 ; H, 5.05; N, 16.70 Found:C, 62.61 ; H, 5.14; N, 16.54	-
16	77	202-204 from methanol	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ Calcd: C, 61.06; H, 4.87; N, 17.80 Found:C, 61.00; H, 5.03; N, 17.65	-
17	79	229-232 from ethanol	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ Calcd: C, 56.65; H, 4.75; N, 18.02 Found:C, 56.61; H, 4.79; N, 18.28	-
18	59	$210-212$ from ethanol	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ Calcd: C, 58.29; H, 5.30; N, 16.99 Found:C, 58.45; H, 5.25; N, 17.29	-
19	29	204-206 from ethanol	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \\ & \text { Calcd: } \mathrm{C}, 66.89 ; \mathrm{H}, 5.30 ; \mathrm{N}, 13.00 \\ & \text { Found:C, } 67.15 ; \mathrm{H}, 5.21 ; \mathrm{N}, 13.02 \end{aligned}$	-
20	53	$216-219$ from ethanol	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \\ & \text { Calcd: C, } 66.01 ; \mathrm{H}, 4.89 ; \mathrm{N}, 13.58 \\ & \text { Found:C, } 66.11 ; \mathrm{H}, 4.62 ; \mathrm{N}, 13.59 \end{aligned}$	-
21	63	270-275 from ethanol	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \\ & \text { Calcd: } \mathrm{C}, 61.19 ; \mathrm{H}, 4.28 ; \mathrm{N}, 11.89 \\ & \text { Found:C, } 61.35 ; \mathrm{H}, 4.33 ; \mathrm{N}, 11.81 \end{aligned}$	-
22	70	```225-227 from ethanol/N,N-dimethylformamide```	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5} \\ & \text { Calcd: C, } 57.63 ; \mathrm{H}, 3.98 ; \mathrm{N}, 15.81 \\ & \text { Found:C, } 57.52 ; \mathrm{H}, 3.87 ; \mathrm{N}, 15.82 \end{aligned}$	-
23	78	$183-185$ from ethanol	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ Calcd: C, 61.93; H, 4.55; N, 18.06 Found:C, 61.60; H, 4.46; N, 17.94	-
24	79	$240-243$ from methanol	$\begin{aligned} & \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Cl} \\ & \text { Calcd: C, } 52.11, \mathrm{H}, 3.50 ; \mathrm{N}, 20.26 \\ & \text { Found:C, } 52.02 ; \mathrm{H}, 3.21 ; \mathrm{N}, 19.98 \end{aligned}$	-
25	61	$\begin{aligned} & >280 \\ & \text { from } \\ & \text { ethanol/ } N, N \text {-dimethylformamide } \end{aligned}$	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}$ Calcd: C, 65.11; H, 4.42; N, 18.08 Found:C, 64.76; H, 4.34; N, 18.00	-
26	91	$230-233$ from methanol	$\begin{aligned} & \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \\ & \text { Calcd: C, } 45.90 ; \mathrm{H}, 4.95 ; \mathrm{N}, 22.94 \\ & \text { Found:C, } 45.64 ; \mathrm{H}, 4.90 ; \mathrm{N}, 22.72 \end{aligned}$	-
27	40	153-156 from methanol/water	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$ Calcd: C, 60.00; H, 4.74; N, 16.46 Found:C, 60.37; H, 5.03; N, 16.62	-
28	$\begin{aligned} & 83^{a} \\ & 69^{b} \end{aligned}$	$145-147$ from methanol	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{4}$ Calcd: C, 51.14; H, 3.76; N, 18.64 Found:C, 50.94; H, 3.41; N, 18.49	-
29	45	182-185 from methanol	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ Calcd: C, 63.30; H, 4.59; N, 16.78 Found:C, 62.97; H, 4.59; N, 16.53	-
30	68	204-207 from ethanol/toluene	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4} \\ & \text { Calcd: C, 61.38; H, } 4.38 ; \mathrm{N}, 17.89 \\ & \text { Found:C, } 61.35 ; \mathrm{H}, 4.33 ; \mathrm{N}, 17.62 \end{aligned}$	-
40	70	$176-177$ from toluene/ethyl acetate	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Cl} \\ & \text { Calcd: C, } 47.72 ; \mathrm{H}, 5.18 ; \mathrm{N}, 16.73 \\ & \text { Found:C, } 47.99 ; \mathrm{H}, 5.18 ; \mathrm{N}, 16.40 \end{aligned}$	-
41	73	$174-175$ from methanol/n-heptane	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Cl} \\ & \text { Calcd: C, } 48.93 ; \mathrm{H}, 5.47 ; \mathrm{N}, 15.85 \\ & \text { Found:C, } 48.86 ; \mathrm{H}, 5.50 ; \mathrm{N}, 15.93 \end{aligned}$	$441^{\text {h }}$
42	52	$132-134$ from ethanol	C18H24N5O6Cl Calcd: C, 48.93; H, 5.47; N, 15.85 Found:C, 49.05; H, 5.62; N, 15.93	-

Table 1 (continued)

Compound	Yield (\%)	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Molecular formula Analyses	MS
43	71	$243-236$ from methanol/toluene	$\begin{aligned} & \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Cl} \\ & \text { Calcd: C, } 52.78 ; \mathrm{H}, 5.06 ; \mathrm{N}, 14.65 \\ & \text { Found:C, } 52.70 ; \mathrm{H}, 4.87 ; \mathrm{N}, 14.54 \end{aligned}$	-
44	64	$105-107$ from ethanol/ N, N-dimethylformamide	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{6} \\ & \text { Calcd: C, } 49.88 ; \mathrm{H}, 5.35 ; \mathrm{N}, 22.62 \\ & \text { Found:C, } 49.48 ; \mathrm{H}, 5.28 ; \mathrm{N}, 22.63 \end{aligned}$	$434{ }^{\text {i }}$
45	80	164-167 from toluene	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}_{5}$ Calcd: C, 48.31; H, 5.07; N, 17.60 Found:C, 47.89; H, 5.01; N, 17.59	-
46	$\begin{aligned} & 57^{\mathrm{c}} \\ & 59^{d} \end{aligned}$	137-143 from ethanol	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{6} \mathrm{O}_{4}$ Calcd: C, 51.62; H, 4.57; N, 20.06 Found:C, 51.38; H, 4.39; N, 20.17	${ }^{-}$
47	28	157-165 from ethanol	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{6} \mathrm{O}_{4} \\ & \text { Calcd: }{ }^{\mathrm{e}} \mathrm{C}, 55.29 ; \mathrm{H}, 4.64 ; \mathrm{N}, 17.58 \\ & \text { Found: } \mathrm{C}, 55.02 ; \mathrm{H}, 4.55 ; \mathrm{N}, 17.54 \end{aligned}$	$\begin{aligned} & 468^{\mathrm{h}} \\ & 469^{\mathrm{i}} \end{aligned}$
48	77	170-172 from ethanol	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{O}_{2}$ Calcd: C, 52.92; H, 4.18; N, 25.41 Found:C, 52.84; H, 4.30; N, 25.39	-
51	$\begin{aligned} & 59^{\mathrm{f}} \\ & 29^{\mathrm{g}} \end{aligned}$	$224-226$ from ethanol/n-heptane	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \\ & \text { Calcd: C, } 65.79 ; \mathrm{H}, 5.85 ; \mathrm{N}, 18.05 \\ & \text { Found:C, } 65.67 ; \mathrm{H}, 5.77 ; \mathrm{N}, 18.29 \end{aligned}$	-
52	59	$227-229$ from ethanol/ N, N-dimethylformamide	$\begin{aligned} & \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2} \\ & \text { Calcd: } \mathrm{C}, 57.68 ; \mathrm{H}, 5.16 ; \mathrm{N}, 26.91 \\ & \text { Found:C, } 57.41 ; \mathrm{H}, 5.12 ; \mathrm{N}, 26.70 \end{aligned}$	-
53	54	$185-187$ from ethanol/dimethyl sulfoxide	$\begin{aligned} & \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \\ & \text { Calcd: C, } 67.44 ; \mathrm{H}, 6.55 ; \mathrm{N}, 16.65 \\ & \text { Found:C, } 67.22 ; \mathrm{H}, 6.75 ; \mathrm{N}, 16.49 \end{aligned}$	$338{ }^{\text {h }}$
54	19	205-213 from ethanol	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2} \\ & \text { Calcd: C, } 56.37 ; \mathrm{H}, 4.73 ; \mathrm{N}, 28.17 \\ & \text { Found:C, } 56.23 ; \mathrm{H}, 4.84 ; \mathrm{N}, 28.05 \end{aligned}$	$298{ }^{\text {h }}$
55	17	$120-122$ from ethanol	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \\ & \text { Calcd: C, } 66.65 ; \mathrm{H}, 6.22 ; \mathrm{N}, 17.27 \\ & \text { Found:C, } 66.53 ; \mathrm{H}, 6.38 ; \mathrm{N}, 17.27 \end{aligned}$	-

[^0]Table 2
${ }^{1}$ H NMR Data

Compound	MHz Solvent	(tetramethylsilane)
12	300 dimethyl sulfoxide- d_{6}	$\delta 3.56,3.71(3 \mathrm{H}, 2 \mathrm{~s}$, COOMe, hydrazine, hydrazone), $4.91(0.8 \mathrm{H}$, dd, CHCHNH , hydrazone), $5.06,5.08\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2}\right.$, hydrazine, hydrazone), $7.03\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}^{\prime}, \mathrm{H}_{6}{ }^{\prime}\right), 7.31-7.41(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH}-$ $\mathrm{CH}-\mathrm{CH}=$, hydrazone $), 8.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}{ }^{\prime}, \mathrm{H}_{5}{ }^{\prime}\right), 8.17\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NHCOOCH} \mathrm{C}_{2} \mathrm{Ph}\right.$, hydrazone $), 11.14$ $\left(1 \mathrm{H}, \mathrm{s}\right.$, Het- $\mathrm{NH}-\mathrm{N}=$, hydrazone), $\mathrm{J}_{\text {NНСНСН }}=5.3 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {NНСНСН }}=7.9 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {CHNHсоосн2Рh }}=7.9 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\mathrm{H}^{\prime}{ }^{\prime} \mathbf{H}^{\prime}}=\mathrm{J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=9.2 \mathrm{~Hz}$ The ratio hydrazone:hydrazine $=61: 39$
13	$\begin{aligned} & 300 \\ & \text { dimethyl sulfoxide- } \mathrm{d}_{6} \end{aligned}$	$\delta 3.56,3.71(3 \mathrm{H}, 2 \mathrm{~s}$, COOMe, hydrazine, hydrazone), $4.86(0.8 \mathrm{H}$, dd, NH-CH-CH=, hydrazone), $5.08,5.13\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2}\right.$, hydrazine, hydrazone), $6.75\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}{ }^{\prime}\right), 7.04\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}{ }^{\prime}\right), 7.30(0.2 \mathrm{H}, \mathrm{d}$, Het-NH-NH-CH=, hydrazine), 7.32-7.40 $(5.8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH}-\mathrm{CH}-\mathrm{CH}=$, hydrazone), $7.59(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.90\left(0.2 \mathrm{H}\right.$, br.s, $\mathrm{NHCOOCH} \mathrm{Ph}_{2} \mathrm{Ph}$, hydrazine), $8.08\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{6}{ }^{\prime}\right), 8.13(0.8 \mathrm{H}, \mathrm{d}, \mathrm{CH}-$ $\mathrm{NHCOOCH} \mathrm{P}_{2} \mathrm{Ph}$, hydrazone), $10.71\left(0.8 \mathrm{H}, \mathrm{s}, \mathrm{Het}-\mathrm{N} H-\mathrm{N}=\right.$, hydrazone), $\mathrm{J}_{\mathrm{NHCHCH}}=5.5 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {NHCHCH }}=7.9 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {CHNHCOOсн2Ph }}=7.8 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {HetNHNHCH }}=14.9 \mathrm{~Hz}$ (hydrazine), $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=0.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=1.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}$ The ratio hydrazone: hydrazine $=74: 16$

Table 2 (continued)

Compound	MHz Solvent	(tetramethylsilane)
14	300 dimethyl sulfoxide-d ${ }_{6}$	$\delta 3.56,3.70(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{COOMe}$, hydrazine, hydrazone), $4.92(0.8 \mathrm{H}$, dd, $\mathrm{NH}-\mathrm{CH}-\mathrm{CH}=$, hydrazone $)$, 5.04, $5.07\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2}\right.$, hydrazine, hydrazone), $7.10(0.2 \mathrm{H}, \mathrm{d}$, Het-NH-NH-CH=, hydrazine), 7.32$7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{4}{ }^{\prime}\right), 7.49(0.8 \mathrm{H}, \mathrm{d}, \mathrm{NH}-\mathrm{CH}-\mathrm{CH}=$, hydrazone $), 7.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{5}{ }^{\prime}\right), 7.97$ $\left(0.2 \mathrm{H}\right.$, br.s, $\mathrm{NHCOOCH} \mathrm{H}_{2} \mathrm{Ph}$, hydrazine), $8.16(0.8 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NHCOOCH} 2 \mathrm{Ph}$, hydrazone), $8.70,9.45$ $(0.4 \mathrm{H}, 2$ br.s, Het-NH-NH-CH=, Het-NH-NH-CH=, hydrazine), 11.57 ($0.8 \mathrm{H}, \mathrm{s}$, Het- $\mathrm{NH}-\mathrm{N}=$, hydrazone), $\mathrm{J}_{\text {NHCHCH }}=5.2 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {NНСНСН }}=7.9 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {CHNHCоосн2Ph }}=7.9 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {HetNHNHCH }}=9.3 \mathrm{~Hz}$ (hydrazine), $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=9.5 \mathrm{~Hz}$ The ratio hydrazone:hydrazine $=80: 20$
15	300 dimethyl sulfoxide- d_{6}	$\delta 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{NH}-\mathrm{CH}-\mathrm{CH}=), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.32-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.41-7.53 (5H, m, 3H(Ph), H_{4}^{\prime}, NH-CH-CH=), 7.99-8.06 ($\left.3 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph}), \mathrm{H}_{5}{ }^{\prime}\right), 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-$ $\left.\mathrm{NHCOOCH}_{2} \mathrm{Ph}\right), 11.50(1 \mathrm{H}, \mathrm{s}$, Het- $\mathrm{NH}-\mathrm{N}=), \mathrm{J}_{\mathrm{NHCHCH}}=5.3 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {NHCHCH}}=7.9 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {CHNHсоосн2Рh }}=7.9 \mathrm{~Hz}$ (hydrazone)
16	300 dimethyl sulfoxide- d_{6}	$\delta 3.60,3.72(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{COOMe}$, hydrazine, hydrazone), $4.92(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}-\mathrm{CH}-\mathrm{CH}=$, hydrazone $), 5.12$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.26-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.57-8.01\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }^{\prime}, \mathrm{H}_{6}{ }^{\prime}, \mathrm{H}_{7}{ }^{\prime}, \mathrm{H}_{8}{ }^{\prime}\right), 8.13\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}{ }^{\prime}\right), 8.23(1 \mathrm{H}$, d, $\mathrm{NH}-\mathrm{CH}-\mathrm{CH}=$, hydrazone $), 8.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NHCOOCH}_{2} \mathrm{Ph}\right.$, hydrazone), $12.38(1 \mathrm{H}, \mathrm{s}$, Het-NH$\mathrm{N}=$, hydrazone), $\mathrm{J}_{\text {NНСНСН }}=5.2 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {NHCHCH }}=7.1 \mathrm{~Hz}$ (hydrazone), $\mathrm{J}_{\text {CHNHСОоСН } 2 \mathrm{Ph}}=7.5$ Hz (hydrazone) The ratio hydrazone:hydrazine $=60: 40$
17	300 dimethyl sulfoxide-d ${ }_{6}$	$\delta 4.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.23-7.32(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CH}), 7.82\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCOOCH} \mathrm{N}_{2} \mathrm{Ph}\right), 9.48,11.15(2 \mathrm{H}$, 2 br.s, $2 \times \mathrm{NH}$)
18	300 dimethyl sulfoxide- d_{6}	$\delta 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.13,7.94(1 \mathrm{H}$, br.s, CH$), 7.34-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.39(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NHCOOCH} \mathrm{H}_{2} \mathrm{Ph}\right), 10.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$
19	300 dimethyl sulfoxide- d_{6}	$\begin{aligned} & \delta 5.02,5.07\left(4 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{CH}_{2}\right), 7.14-7.38(11 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{Ph}, \mathrm{CH}), 8.41\left(1 \mathrm{H}, \mathrm{~s}, \mathrm{~N} H \mathrm{COOCH}_{2} \mathrm{Ph}\right) \text {, } \\ & 10.70(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}) \end{aligned}$
20	300 dimethyl sulfoxide-d ${ }_{6}$	$\delta 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.24-7.48(9 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}(\mathrm{Ph}), \mathrm{CH}), 7.70-7.73(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph})), 8.58(1 \mathrm{H}$, br.s, $\left.\mathrm{NHCOOCH} \mathrm{H}_{2} \mathrm{Ph}\right), 11.16(1 \mathrm{H}$, br.s, NH$)$
21	300 dimethyl sulfoxide- d_{6}	$\delta 5.10\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{2}\right), 7.36-7.40(5 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}) 7.58(1 \mathrm{H}, \mathrm{~s}, \mathrm{CH}), 7.92\left(2 \mathrm{H},{\mathrm{~d}, \mathrm{H}_{2}^{\prime}}^{\prime}, \mathrm{H}_{6}{ }^{\prime}\right), 8.01\left(2 \mathrm{H}, \mathrm{~d}, \mathrm{H}_{3}{ }^{\prime},\right.$ $\left.\mathrm{H}_{5}{ }^{\prime}\right), 8.60\left(1 \mathrm{H}\right.$, br.s, $\left.\mathrm{NHCOOCH}_{2} \mathrm{Ph}\right), 11.65(1 \mathrm{H}$, br.s, NH$), 12.73(1 \mathrm{H}$, br.s, COOH$), \mathrm{J}_{\mathrm{H}^{2} \mathrm{H}^{\prime}}=\mathrm{J}_{\mathrm{H}^{\prime}{ }^{\prime} \mathrm{H}^{\prime}}=$ 8.8 Hz
22	300 dimethyl sulfoxide-d ${ }_{6}$	$\begin{gathered} \delta 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.37-7.41(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 8.08\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}_{\mathrm{H}^{2} \mathrm{H}^{\prime} \mathrm{H}^{\prime}}=\mathrm{J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=9.4 \mathrm{~Hz},\right. \\ \left.\mathrm{H}_{2}{ }^{\prime}, \mathrm{H}_{6}{ }^{\prime}\right), 8.35\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}_{\mathrm{H} 2^{\prime} \mathrm{H} 3^{\prime}}=\mathrm{J}_{\mathrm{H} 5^{\prime} \mathrm{H} \mathrm{H}^{\prime}}=9.0 \mathrm{~Hz}, \mathrm{H}_{3}^{\prime}, \mathrm{H}_{5}{ }^{\prime}\right), 8.71(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCbz}), 9.32(\mathrm{br} . \mathrm{s}, \mathrm{H}, \mathrm{NH}) \end{gathered}$
23	300 dimethyl sulfoxide- d_{6}	
24	300 dimethyl sulfoxide- d_{6}	$\begin{aligned} & \delta 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} H_{2}\right), 7.35-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.94(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 8.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 5^{\prime}}=9.4 \mathrm{~Hz}, \mathrm{H}_{5}{ }^{\prime}\right) \text {, } \\ & 8.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=9.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 8.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{~N} H \mathrm{Cbz}), 12.15(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
25	300 dimethyl sulfoxide- d_{6}	$\delta 5.12$ (s, 2H, CH2), 7.40 (br.s, $5 \mathrm{H}, \mathrm{Ph}$), 7.56 (br.s $3 \mathrm{H}, \mathrm{Ph}$), 7.93 (s, $1 \mathrm{H}, \mathrm{CH}$), 8.15-8.17 (m, 2H, $\mathrm{Ph}), 8.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}^{4} \mathrm{H}^{\prime}}=9.0 \mathrm{~Hz}, \mathrm{H}_{4}{ }^{\prime}\right), 8.63$ (br.s, $1 \mathrm{H}, \mathrm{NHCbz}$), 8.84 (br.s, $\left.1 \mathrm{H}, \mathrm{H}_{5}{ }^{\prime}\right), \mathrm{N} H$ exchanged
26	$\begin{aligned} & 300 \\ & \text { dimethyl sulfoxide-d } \end{aligned}$	$\delta 2.05,2.44(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}), 8.29(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 9.83,11.69(2 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{NH})$
27	300 deuteriochloroform	$\begin{aligned} & \delta 3.82(3 \mathrm{H}, \mathrm{~s}, \mathrm{COOMe}), 5.15\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{2}\right), 6.00(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), 6.32(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), 6.92(1 \mathrm{H}, \\ & \text { deg dd, } \left.\mathrm{H}_{6}\right), 7.29-7.34\left(6 \mathrm{H}, \mathrm{~m}, 6 \mathrm{H}(\mathrm{Ph}), \mathrm{H}_{7}\right), 7.79\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}_{8}\right), 8.36\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}_{5}\right), \mathrm{J}_{\mathrm{CHNH}}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}= \\ & 6.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 7}=6.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=9.4 \mathrm{~Hz} \end{aligned}$
28	300 deuteriochloroform	$\delta 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 5.13(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2), 6.19(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 6.34(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 7.17(1 \mathrm{H}, \mathrm{d}$, H7), $7.34(5 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{Ph}), 8.10(1 \mathrm{H}, \mathrm{d}, \mathrm{H} 8), \mathrm{J}_{\mathrm{CHNH}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=9.5 \mathrm{~Hz}$
29	300 deuteriochloroform	$\begin{aligned} & \delta 3.76(3 \mathrm{H}, \mathrm{~s}, \mathrm{COOMe}), 5.14(2 \mathrm{H}, \mathrm{~s}, \mathrm{CH} 2), 6.23(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), 6.48(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), 7.29-7.36 \\ & (5 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}), 7.55-7.57(3 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}), 7.64(1 \mathrm{H}, \mathrm{~d}, \mathrm{H} 7), 7.95-8.02(2 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}), 8.19(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}), \mathrm{J}_{\mathrm{CHNH}}= \\ & 7.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=9.8 \mathrm{~Hz} \end{aligned}$
30	300 dimethyl sulfoxide-d6	$\delta 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 5.11(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2), 6.07(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 7.29-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.98(1 \mathrm{H}$, ddd, H9), $8.08(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H} 8), 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{H} 7), 8.53(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.55(1 \mathrm{H}, \mathrm{d}, \mathrm{H} 10), 9.15(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H} 6), \mathrm{JCHNH}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 9}=1.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 9}=8.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 10}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9 \mathrm{H} 10}=7.9 \mathrm{~Hz}$
40	300 dimethyl sulfoxide-d6	$\delta 1.17,1.18,1.24\left(9 \mathrm{H}, 3 \mathrm{t}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.15,4.16,4.22\left(6 \mathrm{H}, 3 \mathrm{q}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-$ NH-CH=), $7.38,7.68$ (2H, 2d, H4', H5'), $7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{N}-\mathrm{NH}), 8.10(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 9.63$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 11.70(1 \mathrm{H}, \mathrm{s}$, Het-NH-N=$), \mathrm{JCH}_{2} \mathrm{CH}_{3}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNHCH}}==14.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNHCH}}=$ $=7.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{NHCHCH}}==4.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{4} \mathrm{HS}^{\prime}}=9.4 \mathrm{~Hz}$
41	300 deuteriochloroform	$\delta 1.27,1.35,1.37\left(9 \mathrm{H}, 3 \mathrm{t}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.40(3 \mathrm{H}, \mathrm{s}$, Het-Me), 4.20, 4.31, $4.33(6 \mathrm{H}, 3 \mathrm{q}, 3 \times$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 7.53\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\prime}\right), 7.50(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{N}-\mathrm{NH}), 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-$ NH-CH=), $9.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 11.60(1 \mathrm{H}, \mathrm{s}$, Het-NH-N=$), \mathrm{JCH}_{2} \mathrm{CH}_{3}=7.1 \mathrm{~Hz}, \mathrm{~J}_{\text {Снлнсн }}==$ $14.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNHCH}}==7.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{NHCHCH}}==3.8 \mathrm{~Hz}$

Table 2 (continued)

Compound	MHz Solvent	(tetramethylsilane)
42	$\begin{aligned} & 300 \\ & \text { dimethyl sulfoxide- } \mathrm{d}_{6} \end{aligned}$	$\delta 1.25,1.40,1.49\left(9 \mathrm{H}, 3 \mathrm{t}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.50(3 \mathrm{H}, \mathrm{s}, \mathrm{Het}-\mathrm{Me}), 3.59,4.20,4.20(6 \mathrm{H}, 3 \mathrm{q}, 3 \times$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 7.46\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{5}{ }^{\prime}\right), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{N}-\mathrm{NH}), 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-$ $\mathrm{NH}-\mathrm{CH}=), 9.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{N} H-\mathrm{CH}=), 10.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Het}-\mathrm{N} H-\mathrm{N}=), \mathrm{J}_{\mathrm{CH}_{2} \mathrm{CH}}^{3}=7.0 \textrm{Hz}, \mathrm{~J}_{\mathrm{CHNHCH}}=13.9$ $\mathrm{Hz}, \mathrm{J}_{\text {СНАНСН }}=7.8 \mathrm{~Hz}, \mathrm{~J}_{\text {NHCHCH }}=4.2 \mathrm{~Hz}$
43	300 dimethyl sulfoxide-d ${ }_{6}$	$\delta 1.12,1.15,1.25\left(9 \mathrm{H}, 3 \mathrm{t}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.88,4.10,4.10\left(6 \mathrm{H}, 3 \mathrm{q}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-$ $\mathrm{NH}-\mathrm{CH}=), 7.10-8.05(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{CH}=\mathrm{N}-\mathrm{NH}), 8.35(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 9.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-$ $\mathrm{CH}=), 11.90(1 \mathrm{H}, \mathrm{s}$, Het-NH-N=$), \mathrm{J}_{\mathrm{CH}_{2} \mathrm{CH}_{3}}=7.1 \mathrm{~Hz}, \mathrm{~J}_{\text {СНNHCH }}=14.0 \mathrm{~Hz}, \mathrm{~J}_{\text {CHNHCH}}=7.6 \mathrm{~Hz}$
44	$\begin{aligned} & 300 \\ & \text { dimethyl sulfoxide- } \mathrm{d}_{6} \end{aligned}$	$\delta 1.12,1.17,1.23\left(9 \mathrm{H}, 3 \mathrm{t}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.08,4.17,4.22\left(6 \mathrm{H}, 3 \mathrm{q}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-$ $\mathrm{NH}-\mathrm{CH}=), 6.77,7.26\left(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{H}_{7}{ }^{\prime}, \mathrm{H}_{8}{ }^{\prime}\right), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{N}-\mathrm{NH}), 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 9.58$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{N} H-\mathrm{CH}=), 10.80\left(1 \mathrm{H}, \mathrm{s}\right.$, Het-NH-N=), $\mathrm{J}_{\mathrm{CH}_{2} \mathrm{CH}}^{3}=7.1 \textrm{Hz}, \mathrm{~J}_{\mathrm{CHNHCH}}=14.0 \mathrm{~Hz}, \mathrm{~J}_{\text {CHNHCH}}=$ $7.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{NHCHCH}}=4.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7^{\prime} \mathrm{H}^{\prime}}=9.9 \mathrm{~Hz}$
45	300 dimethyl sulfoxide- d_{6}	$\delta 1.20,1.21,1.24,1.29,1.30\left(6 \mathrm{H}, 5 \mathrm{t}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30,2.31,2.32,2.38(3 \mathrm{H}, 4 \mathrm{~s}, \mathrm{COMe}), 4.08$, 4.11, 4.23, 4.30, 4.36, ($4 \mathrm{H}, 5 \mathrm{q}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 7.44\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{4}\right), 7.63$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{N}-\mathrm{NH}), 7.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{5}^{\prime}\right), 8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 11.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=)$, $11.71(1 \mathrm{H}, \mathrm{s}$, Het-NH-N=$), \mathrm{J}_{\mathrm{CH}_{2} \mathrm{CH}}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\text {СНлНСН }}=13.6 \mathrm{~Hz}, \mathrm{~J}_{\text {СНлНСН }}=7.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{NH} \text { сНСН }}=4.1$ $\mathrm{Hz}, \mathrm{J}_{\mathrm{H} 4 \mathrm{H}^{\prime}}=9.4 \mathrm{~Hz}$
46	300 deuteriochloroform	$\delta 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-$ NH-CH=), $7.00\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right), 7.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{5}\right), 7.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{4}\right), 7.64\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right), 7.69(1 \mathrm{H}, \mathrm{d}$, $C H=\mathrm{N}-\mathrm{NH}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 8.31\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.46\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 11.13(1 \mathrm{H}$, br.s, Het-NH-N=), 11.41 (1 H , dd, CH-NH-CH=), $\mathrm{J}_{\text {СН2СН }}=7.1 \mathrm{~Hz}, \mathrm{~J}_{\text {СНNHCH }}=12.6 \mathrm{~Hz}, \mathrm{~J}_{\text {CHNHCH }}=7.7 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{NH} \text { сНСн }}=4.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{3} \mathrm{H}^{4}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{3} \mathrm{H}^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{3} \mathrm{H}^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{4} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \cdot \mathrm{H}^{\prime}}=2.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} \mathrm{S}^{\prime} \mathrm{H} 6}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H4H5}}=9.4 \mathrm{~Hz}$
47	300 deuteriochloroform	$\delta 1.34\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 5.00(1 \mathrm{H}$, br.s, $\mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 6.99\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}{ }^{\prime}\right), 7.64\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.74-7.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{7}\right), 7.81-7.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}\right)$, $7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H=\mathrm{N}-\mathrm{NH}), 7.87-7.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{8}\right), 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 8.26\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}\right)$, $8.28-8.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 8.44\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), \mathrm{J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNHCH}}=12.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{NHCHCH}}=4.2 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime} 4^{\prime}}=8.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}$
48	300 deuteriochloroform	$\delta 1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.37\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 7.08(1 \mathrm{H}$, ddd, H_{5}^{\prime}), $7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 7.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{5}\right), 7.50\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 7.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{4}\right), 7.72$ $\left.\left.\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right)^{\prime}\right), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{N}-\mathrm{NH}), 8.34\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}\right)^{\prime}\right), 10.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}-\mathrm{NH}-\mathrm{CH}=), 11.33$ 9.4 Hz
51	300 dimethyl sulfoxide- d_{6}	$\begin{aligned} & \delta 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.25\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.90-7.45(10 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{Ph}), 8.30\left(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}_{3}\right), 10.80 \text {, } \\ & 11.20(1 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ph}-\mathrm{NH}), \mathrm{J}_{\mathrm{CH}_{2} \mathrm{CH}_{3}}=7.1 \mathrm{~Hz} \end{aligned}$
52	300 dimethyl sulfoxide- d_{6}	$\begin{aligned} & \delta 1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.88-8.37(8 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{Py}), 8.38\left(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}_{3}\right), 11.44 \text {, } \\ & 13.35(2 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Het}-\mathrm{NH}), \mathrm{J}_{\mathrm{CH}_{2} \mathrm{CH} 3}=7.1 \mathrm{~Hz} \end{aligned}$
53	300 dimethyl sulfoxide- d_{6}	$\begin{gathered} \delta 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.25,2.29(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ar}-\mathrm{Me}), 4.25\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.59-7.25(10 \mathrm{H}, \mathrm{~m}, \\ 2 \times \mathrm{Ph}), 8.20\left(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}_{3}\right), 10.70,12.13(2 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ar}-\mathrm{NH}), \mathrm{J}_{\mathrm{CH}_{2} \mathrm{CH}_{3}}=7.1 \mathrm{~Hz} \end{gathered}$
54	300 dimethyl sulfoxide- d_{6}	$\begin{aligned} & \delta 3.81(3 \mathrm{H}, \mathrm{~s}, \mathrm{COOMe}), 6.92,7.09\left(2 \mathrm{H}, 2 \mathrm{ddd}, 2 \times \mathrm{H}_{5}\right), 7.15,7.49\left(2 \mathrm{H}, 2 \mathrm{~d}, 2 \times \mathrm{H}_{3}\right), 7.79,7.86(2 \mathrm{H}, \\ & \left.2 \mathrm{ddd}, 2 \times \mathrm{H}_{4}\right), 8.23,8.34\left(2 \mathrm{H}, 2 \mathrm{~d}, 2 \times \mathrm{H}_{6}\right), 8.38(1 \mathrm{H}, \mathrm{~s}, \mathrm{CH}), 11.44,13.36(2 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Het}-\mathrm{NH}), \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4} \\ & =8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 5}=0.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=4.9 \mathrm{~Hz} \end{aligned}$
55	$\begin{aligned} & 300 \\ & \text { dimethyl sulfoxide- } \mathrm{d}_{6} \end{aligned}$	```\delta 3.35, 3.38(6H, 2s, 2 × Me), 3.87(3H, s, COOMe), 6.37-6.47 (2H, m, 2H(Ph)), 6.68-6.80(8H, m, 8H(Ph)), 7.47(1H, s, CH)```

EXPERIMENTAL

Melting points were taken on a Kofler micro hot stage. The ${ }^{1} \mathrm{H}$ nmr spectra were obtained on a Bruker Avance DPX 300 (300 MHz) spectrometer in such solvents as dimethyl sulfoxided_{6} and deuteriochloroform with tetramethylsilane as the internal standard, MS spectra on an AutoSpecQ spectrometer and elemental analyses for C, H and N on a Perkin-Elmer CHN Analyser 2400. Experimental and analytical data are given in Tables 1 and 2.

The following compounds were prepared according to the procedures described in the literature: methyl 2-(benzyloxy-carbonyl)amino-3-dimethylaminopropenoate (1) [36], ethyl (Z)-2-[2,2-bis(ethoxycarbonyl)ethenyl]amino-3-dimethylaminopropenoate (31) [37], ethyl 2-(2-acetyl-2-ethoxy-carbonyl-1-ethenyl)amino-3-dimethylaminopropenoate (32) [38], methyl (Z)-2-[(E)-2-ethoxycarbonyl-2-(pyridin-2-yl)-ethenyl]amino-3-dimethyl-aminopropenoate (33) [39], ethyl $(Z)-2-[(E)$-2-cyano-2-(pyrid-2-yl)ethenyl]amino-3-dimethylaminopropenoate (34) [40], and methyl 2-[2-ethoxycarbonyl-2-(pyridin-2-yl)ethenyl]amino-3-dimethylaminopropenoate [40].

General Procedure for the Preparation of Methyl 2-(Benzyl-oxycarbonyl)amino-3-heteroarylhydrazono-propanoates 12-16.

To a suspension of compound $\mathbf{1}(1 \mathrm{mmol}, 278 \mathrm{mg})$ in ethanol (3-4 mL) a catalytic amount of hydrochloric acid ($0.1 \mathrm{~mL}, 36 \%$) and the corresponding heteroarylhydrazine 7-11 (1 mmol) were added. The reaction mixture was stirred at room temperature for several hours and the product was isolated by an appropriate method.

Methyl 2-(Benzyloxycarbonyl)amino-3-(4-nitrophenyl)hydrazonopropanoate (12).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and 4-nitrophenylhydrazine (7) ($1 \mathrm{mmol}, 154 \mathrm{mg}$) , 12 hours. The volatile compounds were evaporated in vacuo, a mixture of ether (2 mL) and ethanol (2 mL) was added to the oily residue and the precipitate, formed after cooling, was collected by filtration. Ethanol (5 mL) was used for crystallization.
Methyl 2-(Benzyloxycarbonyl)amino-3-(pyridin-2-yl)hydrazonopropanoate (13).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and 2-hydrazinopyridine ($\mathbf{8}$) ($1 \mathrm{mmol}, 109 \mathrm{mg}$), 2.5 hours. Water (5 mL) was added to the reaction mixture, the suspension was stirred for a while, and the precipitate was collected by filtration. The mixture of methanol (2 mL) and water (2 mL) was used for crystallization.

Methyl 2-(Benzyloxycarbonyl)amino-3-(6-chloropyridazin-3yl)hydrazonopropanoate (14).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and 6-chloro-3-hydrazinopyridazine (9) ($1 \mathrm{mmol}, 144 \mathrm{mg}$), 2 hours. Water (5 mL) was added to the reaction mixture, the suspension was stirred for a while, and the precipitate was collected by filtration. The mixture of methanol (2 mL) and water (2 mL) was used for crystallization.
Methyl 2-(Benzyloxycarbonyl)amino-3-(6-phenylpyridazin-3yl)hydrazonopropanoate (15).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and 3-hydrazino-6-phenylpyridazine (10) ($1 \mathrm{mmol}, 144$ $\mathrm{mg}), 5$ hours. Water (5 mL) was added to the reaction mixture, the suspension was stirred for a while, and the precipitate was collected by filtration. The mixture of methanol (2 mL) and water (2 mL) was used for crystallization.

Methyl 2-(Benzyloxycarbonyl)amino-3-(phthalazin-1-yl)hydrazonopropanoate (16).

This compound was prepared from compound $1(1 \mathrm{mmol}, 278$ mg) and 1-hydrazinophthalazine hydrochloride (11) (1 mmol , $196 \mathrm{mg}), 12$ hours. The precipitated product was collected by filtration. Methanol (5 mL) was used for crystallization.
Benzyl N-(3-oxo-2,3-dihydro-1 H -pyrazol-4-yl)carbamate (17).

To a solution of compound $\mathbf{1}(1 \mathrm{mmol}, 278 \mathrm{mg})$ in ethanol (5 $\mathrm{mL})$ hydrazine hydrate ($\mathbf{(2)}(99 \%, 3 \mathrm{mmol}, 0.146 \mathrm{~mL})$ was added and the mixture was refluxed for 3 hours. The volatile compounds were evaporated in vacuo, ethanol (5 mL) was added and the precipitate was collected by filtration.

General Procedure for the Preparation of 4-(Benzyloxy-carbonyl)amino-1-akyl and 1-aryl- 1 H -pyrazol-5(2H)-ones 1821.

To a solution of compound $\mathbf{1}(1 \mathrm{mmol}, 278 \mathrm{mg})$ in ethanol (5 mL) a catalytic amount of hydrochloric acid ($0.1 \mathrm{~mL}, 36 \%$) and the corresponding alkylhydrazine $\mathbf{3 , 4}(1 \mathrm{mmol})$ or arylhydrazine 5, $\mathbf{6}(1 \mathrm{mmol})$ were added. The reaction mixture was refluxed for several hours. The volatile compounds were evaporated in vacuo, ethanol (5 mL) was added and the precipitate was collected by filtration.

Benzyl N-(2-methyl-3-oxo-2,3-dihydro-1H-pyrazol-4-yl)carbamate (18).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and methylhydrazine (3) ($1 \mathrm{mmol}, 46 \mathrm{mg}$), 1 hour.

Benzyl N-(2-benzyl-3-oxo-2,3-dihydro-1 H -pyrazol-4-yl)carbamate (19).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and benzylhydrazine dihydrochloride (4) ($1 \mathrm{mmol}, 160 \mathrm{mg}$), 3 hours.

Benzyl N-(2-phenyl-3-oxo-2,3-dihydro-1H-pyrazol-4-yl)carbamate (20).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and phenylhydrazine (5) ($1 \mathrm{mmol}, 108 \mathrm{mg}$), 4 hours.

Benzyl N-[2-(4-carboxyphenyl)-3-oxo-2,3-dihydro-1 H -pyrazol-4-yl]carbamate (21).

This compound was prepared from compound $\mathbf{1}(1 \mathrm{mmol}, 278$ mg) and 4-carboxyphenylhydrazine (6) ($1 \mathrm{mmol}, 152 \mathrm{mg}$), 4 hours.

Preparation of Benzyl N-(2-heteroaryl-3-oxo-2,3-dihydro-1H-pyrazol-4-yl)carbamates 22-25.
Method A.
To a suspension of compound $1(0.5 \mathrm{mmol}, 139 \mathrm{mg})$ in ethanol (3 mL) a catalytic amount of hydrochloric acid $(0.1 \mathrm{~mL}$, 36%) and the corresponding heteroarylhydrazine 7, 8, 10 (0.5 $\mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for several hours. Afterwards water (3 mL) and triethylamine (1 mL) were added and the mixture was refluxed (stirred at room temperature for compound 22) for several minutes. The reaction mixture was neutralized with 10% hydrochloric acid and the formed precipitate was collected by filtration.

Method B.
The solution of methyl 2-(benzyloxycarbonyl)amino-3-(6-chloropyridazin-3-yl)hydrazonopropanoate $\mathbf{1 4}(0.5 \mathrm{mmol}, 181$ mg) in the mixture of methanol (3 mL), water (3 mL) and triethylamine (1 mL) was refluxed for 2 hours. The volatile compounds were evaporated in vacuo, the oily residue was neutralized with 10% hydrochloric acid and the precipitate was collected by filtration.

Benzyl N-[2-(4-nitrophenyl)-3-oxo-2,3-dihydro-1 H -pyrazol-4yl]carbamate (22).

This compound was prepared by method A, from compound $\mathbf{1}$ $(0.5 \mathrm{mmol}, 139 \mathrm{mg})$ and 4-nitrophenylhydrazine (7) (0.5 mmol ,

77 mg), 1.5 hours, after addition of water and triethylamine stirred at room temperature for 10 minutes. The mixture of ethanol (2 mL) and N, N-dimethylformamide (1 mL) was used for crystallization.

Benzyl N-[2-(pyridin-2-yl)-3-oxo-2,3-dihydro-1H-pyrazol-4yl]carbamate (23).

This compound was prepared by method A, from compound $\mathbf{1}$ $(0.5 \mathrm{mmol}, 139 \mathrm{mg})$ and 2-hydrazinopyridine $(\mathbf{8})(0.5 \mathrm{mmol}, 55 \mathrm{mg})$, 4 hours, after addition of water and triethylamine refluxed for 30 minutes. The formed precipitate was washed with ethanol (2 mL).

Benzyl N-[2-(6-chloropyridazin-3-yl)-3-oxo-2,3-dihydro-1H-pyrazol-4-yl]carbamate (24).

This compound was prepared by method B. Methanol (3 mL) was used for crystallization.

Benzyl N-[2-(6-phenylpyridazin-3-yl)-3-oxo-2,3-dihydro-1H-pyrazol-4-yl]carbamate (25).

This compound was prepared by method A, from compound 1 ($0.5 \mathrm{mmol}, 139 \mathrm{mg}$) and 6-phenyl-3-hydrazinopyridazine (10) ($0.5 \mathrm{mmol}, 72 \mathrm{mg}$), 2 hours, after addition of water and triethylamine refluxed for 15 minutes. The mixture of ethanol (2 $\mathrm{mL})$ and N, N-dimethylformamide $(1 \mathrm{~mL})$ was used for crystallization.
N-(1-Acetyl-3-oxo-2,3-dihydro-1H-pyrazol-4-yl)acetamide (26).
To a solution of compound $17(0.6 \mathrm{mmol}, 150 \mathrm{mg})$ in a mixture of acetic acid (5 mL) and acetic anhydride (3 mL) $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (30 mg) was added. The mixture was hydrogenated (hydrogen pressure $=3 \mathrm{~atm}$) at room temperature for 12 hours. The catalyst was removed from reaction mixture by filtration. The volatile compounds were evaporated in vacuo, methanol (3 mL) was added and the precipitate was collected by filtration.
Preparation of Methyl N-(Benzyloxycarbonyl)amino-(1,2,4-triazolo[4,3-x]azin-3-yl)glycinates 27-30.
Method A.
To a suspension of compound $\mathbf{1}(1 \mathrm{mmol}, 139 \mathrm{mg})$ in methanol $(5 \mathrm{~mL})$ a catalytic amount of hydrochloric acid $(0.1$ $\mathrm{mL}, 36 \%$) and the corresponding heteroarylhydrazine $\mathbf{8}, \mathbf{1 0}$ (1 mmol) were added. The reaction mixture was stirred at room temperature for several hours. Afterwards methanol (additional 5 mL) and sodium acetate ($3 \mathrm{mmol}, 369 \mathrm{mg}$) were added. While stirring the solution of bromine in methanol $(0.026 \mathrm{~mL}$ Bromine $/ 2.5 \mathrm{~mL}$ Methanol) was added dropwise in a period of 15 minutes and the reaction mixture was stirred at room temperature for several hours. The volatile compounds were evaporated in vacuo, aqueous sodium bicarbonate (10 mL) was added to the residue, and the mixture was extracted with chloroform (3 x 15 mL). The organic phases were collected, dried over anhydrous sodium sulfate, filtered, and the volatile compounds were evaporated in vacuo. The residue was treated with ether $(10 \mathrm{~mL})$ and precipitate collected by filtration.
Method B.
To a stirred mixture of methyl 2-(benzyloxycarbonyl)amino-3-(6-chloropyridazin-3-yl)hydraz-onopropanoate (14) (0.5 mmol , 181 mg), sodium acetate ($1.5 \mathrm{mmol}, 123 \mathrm{mg}$), and methanol (5 $\mathrm{mL})$ the solution of bromine in methanol $(0.026 \mathrm{~mL}$ Bromine $/ 2.5$ mL Methanol) was added dropwise in a periode of 15 minutes.

The solution was stirred at room temperature for 4.5 hours. The volatile compounds were evaporated in vacuo, aqueous sodium bicarbonate $(10 \mathrm{~mL})$ was added to the residue and the mixture was extracted with chloroform (3 x 15 mL). The organic phases were collected, dried over anhydrous sodium sulfate, filtered, and the volatile compounds were evaporated in vacuo. The mixture of ether $(5 \mathrm{~mL})$ and i-propyl alcohol $(5 \mathrm{~mL})$ was added to the residue and the precipitate was collected by filtration.

Method C.

To a solution of corresponding methyl 2-(benzyloxy-carbonyl)amino-3-heteroaryl-hydrazonopropanoate 14, 16 (0.5 mmol) in dichloromethane $(6 \mathrm{~mL})$ lead tetraacetate $(0.8 \mathrm{mmol}$, 350 mg) was added. After stirring at room temperature for several hours the precipitate was collected by filtration and washed with dichloromethane. The volatile compounds were evaporated in vacuo, the residue was treated with ethanol $(5 \mathrm{~mL})$ (with the mixture of ethanol (2.5 mL) and ether (2.5 mL) for compound 30), and the precipitate was collected by filtration.

Methyl N-(Benzyloxycarbonyl)amino-(1,2,4-triazolo[4,3-a]-pyridin-3-yl)glycinate (27).

This compound was prepared by method A, from compound 1 ($1 \mathrm{mmol}, 278 \mathrm{mg}$) and 2-hydrazinopyridine ($\mathbf{8}$) ($1 \mathrm{mmol}, 109$ mg), 2 hours, after addition of Bromine/Methanol stirred for 48 hours. The mixture of methanol $(2 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$ was used for crystallization.

Methyl N-(Benzyloxycarbonyl)amino-(6-chloro-1,2,4-triazolo-[4,3-b]pyridazin-3-yl)glycinate (28).

This compound was prepared by method B , and also by method C, from compound $14(0.5 \mathrm{mmol}, 189 \mathrm{mg}), 5$ hours. Methanol (5 mL) was used for crystallization.

Methyl N-(Benzyloxycarbonyl)amino-(6-phenyl-1,2,4-triazolo-[4,3-b]pyridazin-3-yl)glycinate (29).

This compound was prepared by method A , from compound 1 ($1 \mathrm{mmol}, 278 \mathrm{mg}$) and 3-hydrazino-6-phenylpiridazine (10) (1 mmol, 186 mg), 2 hours, after addition of Bromine/Methanol stirred for 4 days. Methanol (5 mL) was used for crystallization.

Methyl N-(Benzyloxycarbonyl)amino-(1,2,4-triazolo[4,3-a]-phthalazin-1-yl)glycinate (30).

This compound was prepared by method C , from compound $16(0.5 \mathrm{mmol}, 197 \mathrm{mg}), 2$ hours. The mixture of ethanol (3 mL) and toluene $(2 \mathrm{~mL})$ was used for crystallization.

General Procedure for the Preparation of Alkyl 2-[2,2-(Disubstituted)ethenyl]amino-3-heteroarylhydrazonopropanoates 40-48.

To a suspension of compound 31-34 (1 mmol) in ethanol (3-4 $\mathrm{mL})$ a catalytic amount of hydrochloric acid $(0.1 \mathrm{~mL}, 36 \%)$ and the corresponding heteroarylhydrazine $9,36-39(1 \mathrm{mmol})$ were added. The reaction mixture was stirred at room temperature for several hours and the product was isolated by an appropriate method.

Ethyl 2-[2,2-Bis(ethoxycarbonyl)ethenyl]amino-3-(6-chloro-pyridazin-3-yl)hydrazonopropanoate (40).

This compound was prepared from compound 31 (1 mmol , 328 mg) and 6-chloro-3-hydrazinopyridazine (9) (1 mmol, 144
mg), 1 hour. The volatile compounds were evaporated in vacuo, the mixture of toluene (2 mL) and ethyl acetate (2 mL) was added and the precipitate was collected by filtration.
Ethyl 2-[2,2-Bis(ethoxycarbonyl)ethenyl]amino-3-(6-chloro-5-methylpyridazin-3-yl)hydrazonopropanoate (41).

This compound was prepared from compound $\mathbf{3 1}$ (1 mmol , 328 mg) and 6-chloro-3-hydrazino-5-methylpyridazine (36) (1 $\mathrm{mmol}, 158 \mathrm{mg}$), 2.5 hours. The volatile compounds were evaporated in vacuo, the mixture of methanol (2 mL) and n heptane (2 mL) was added and the precipitate was collected by filtration.

Ethyl 2-[2,2-Bis(ethoxycarbonyl)ethenyl]amino-3-(6-chloro-4-methylpyridazin-3-yl)hydrazonopropanoate (42).

This compound was prepared from compound $\mathbf{3 1}$ (1 mmol , 328 mg) and 6-chloro-3-hydrazino-4-methylpyridazine (37) (1 $\mathrm{mmol}, 158 \mathrm{mg}$), 2.5 hours. The volatile compounds were evaporated in vacuo, ethanol (4 mL) was added and the precipitate was collected by filtration.

Ethyl 2-[2,2-Bis(ethoxycarbonyl)ethenyl]amino-3-(4-chloro-phthalazin-1-yl)hydrazonopropanoate (43).

This compound was prepared from compound $\mathbf{3 1}$ (1 mmol , 328 mg) and 4-chloro-1-hydrazinophthalazine hydrochloride (38) ($1 \mathrm{mmol}, 186 \mathrm{mg}$), 2 hours. The volatile compounds were evaporated in vacuo, the mixture of methanol (2 mL) and toluene (2 mL) was added and the precipitate was collected by filtration.

Ethyl 2-[2,2-Bis(ethoxycarbonyl)ethenyl]amino-3-(1,2,4-triazolo-[4,3-b]pyridazin-6-yl)hydrazonopropanoate (44).
This compound was prepared from compound $\mathbf{3 1}(1 \mathrm{mmol}$, 328 mg) and 6-hydrazino-1,2,4-triazolo[4,3-b]pyridazine (39) (1 $\mathrm{mmol}, 150 \mathrm{mg}$), 30 minutes. The volatile compounds were evaporated in vacuo, the mixture of ethanol (3 mL) and N, N dimethyl formamide (1 mL) was added and the precipitate was collected by filtration.

Ethyl 2-(2-Acetyl-2-ethoxycarbonylethenyl]amino-3-(6-chloro-pyridazin-3-yl)hydrazonopropanoate (45).

This compound was prepared from compound 32 (1 mmol , 298 mg) and 6-chloro-3-hydrazinopyridazine (9) ($1 \mathrm{mmol}, 144$ $\mathrm{mg}), 3$ hours. Afterwards water (2 mL) was added and the precipitate was collected by filtration. Toluene (4 mL) was used for crystallization.
Methyl 2-[2-Ethoxycarbonyl-2-(pyridin-2-yl)ethenyl]amino-3-(6-chloropyridazin-3-yl)hydrazonopropanoate (46).

This compound was prepared from compound 33 (1 mmol , 320 mg) and 6-chloro-3-hydrazinopyridazine (9) ($1 \mathrm{mmol}, 144$ mg), 3.5 hours. The formed precipitate was collected by filtration and washed with ethanol (4 mL).

Compound 46 was prepared also from methyl 2-[2-ethoxycarbonyl-2-(pyridin-2-yl)ethenyl]amino-3-hydroxypropenoate hydrochloride ($\mathbf{3 5}$) ($0.5 \mathrm{mmol}, 164 \mathrm{mg}$) and 6 -chloro-3hydrazinopyridazine (9) ($0.5 \mathrm{mmol}, 72 \mathrm{mg}$) which were suspended in ethanol $(2 \mathrm{~mL})$ and the mixture was stirred at room temperature for 3.5 hours. The formed precipitate was collected by filtration and washed with ethanol (4 mL).

Methyl 2-[2-Ethoxycarbonyl-2-(pyridin-2-yl)ethenyl]amino-3-(4-chlorophthalazin-1-yl)hydrazonopropanoate (47).

This compound was prepared from compound 33 (1 mmol , 320 mg) and 4-chloro-1-hydrazinophthalazine hydrochloride (38) ($1 \mathrm{mmol}, 186 \mathrm{mg}$), 1 hour. The formed precipitate was collected by filtration and washed with ethanol (4 mL).

Ethyl 2-[2-Cyano-2-(pyridin-2-yl)ethenyl]amino-3-(6-chloro-pyridazin-3-yl)hydrazonopropanoate (48).

This compound was prepared from compound 34 (1 mmol , 286 mg) and 6-chloro-3-hydrazinopyridazine (9) ($1 \mathrm{mmol}, 144$ mg), 30 minutes. The formed precipitate was collected by filtration and washed with ethanol (4 mL).

General Procedure for the Preparation of Alkyl 2,3Bis((hetero)arylhydrazono) propanoates 51-55.
To a suspension of compound 31-33 (0.5 mmol) in ethanol (23 mL) a catalytic amount of hydrochloric acid ($0.1 \mathrm{~mL}, 36 \%$) and the corresponding (hetero)arylhydrazine 5, 8, 49, 50 (1 $\mathrm{mmol})$ were added. The reaction mixture was stirred at room temperature from few minutes to several hours and the product was isolated by an appropriate method.
Ethyl 2,3-Bis(phenylhydrazono)propanoate (51).
This compound was prepared from compound $\mathbf{3 1}(0.5 \mathrm{mmol}$, 164 mg) and phenylhydrazine (5) ($1 \mathrm{mmol}, 108 \mathrm{mg}$), 1 hour. The volatile compounds were evaporated in vacuo, the mixture of ethanol (2 mL) and n-heptane (2 mL) was added and the precipitate was collected by filtration. Compound 51 was prepared also from compound $32(0.5 \mathrm{mmol}, 149 \mathrm{mg})$ and phenylhydrazine (5) ($1 \mathrm{mmol}, 108 \mathrm{mg}$), 48 hours. Afterwards water (2 mL) was added and the precipitate was collected by filtration. The mixture of ethanol (2 mL) and n-heptane (2 mL) was used for crystallization.

Ethyl 2,3-Bis(pyridin-2-ylhydrazono)propanoate (52).

This compound was prepared from compound $31(0.5 \mathrm{mmol}$, 164 mg) and 2-hydrazinopyridine ($\mathbf{8}$) ($1 \mathrm{mmol}, 109 \mathrm{mg}$), 3 hours. The volatile compounds were evaporated in vacuo, the mixture of ethanol (3 mL) and N, N-dimethyl formamide (1 mL) was added and the precipitate was collected by filtration.

Ethyl 2,3-Bis(4-methylphenylhydrazono)propanoate (53).
This compound was prepared from compound $\mathbf{3 1}(0.5 \mathrm{mmol}$, 164 mg) and 4-methylphenylhydrazine (49) ($1 \mathrm{mmol}, 122 \mathrm{mg}$), 1 hour. The volatile compounds were evaporated in vacuo, the mixture of ethanol (3 mL) and dimethyl sulfoxide (1 mL) was added and the precipitate was collected by filtration.

Methyl 2,3-Bis(pyridin-2-ylhydrazono)propanoate (54).

This compound was prepared from compound 33 (0.5 mmol , 160 mg) and 2-hydrazinopyridine ($\mathbf{8}$) ($1 \mathrm{mmol}, 109 \mathrm{mg}$), 10 minutes. The formed precipitate was collected by filtration and washed with ethanol (2 mL).

Methyl 2,3-Bis(1-methyl-1-phenylhydrazono)propanoate (55).
This compound was prepared from compound $33(0.5 \mathrm{mmol}$, 160 mg) and 1-methyl-1-phenylhydrazine (50) ($1 \mathrm{mmol}, 147$ mg), 5 hours. The formed precipitate was collected by filtration and washed with ethanol (2 mL).

Acknowledgements.

The financial support from the Slovenian Research Agency through grants P0-0502-0103, P1-0179, and J1-6689-0103-04 is gratefully acknowledged. We acknowledge with thanks the financial support from the pharmaceutical companies Krka d.d. (Novo mesto, Slovenia) and Lek d.d. (Ljubljana, Slovenia).

REFERENCES AND NOTES

[1] W. T. Ashton, S. M. Hutchins, W. J. Greenlee, G. A. Doss, R. S. L. Chang, V. J. Lotti, K. A. Faust, T. B. Chen, G. J. Zingaro, S. D. Kirlighu, and P. K. S. Siegl, J. Med. Chem. 36, 3595 (1993).
[2] J. Elguero, "Pyrazoles and their Benzo Derivatives" in "Comprehensive Heterocyclic Chemistry", ed. by A. R. Katritzky and C. W. Rees, Vol 5, Pergamon Press, Oxford 1984, pp. 167-303.
[3] J. Elguero, "Pyrazoles" in "Comprehensive Heterocyclic Chemistry II", ed. by A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Vol 3, Elsevier Science Ltd., Oxford 1996, pp. 1-75.
[4] A. A. Kost and I. I. Grandberg, Adv. Heterocycl. Chem., 6, 347 (1966).
[5] B. Stanovnik and J. Svete, "Pyrazoles", in "Science of Synthesis, Houben-Weyl Methods of Molecular Transformations", ed. by R. Neier, Vol. 12, Georg Thieme Verlag, Stuttgart 2002, pp. 15-225.
[6] J. Elguero and G. Coispean, Bull. Soc. Chim. Fr., 2717 (1970).
[7] Y. R. Huang, J. A. Katzenellenbogen, Org. Lett., 2, 2833 (2000).
[8] A. R. Katritzky, M. Wang, S. Zhang, M. V. Voronkov, J. Org. Chem., 66, 6787 (2001).
[9] A. Alberola, C. Andrés, A. Gonzales-Ortega, and R. Pedrosa, J. Heterocycl. Chem., 21, 1575 (1984).
[10] X.-J- Wang, J. Tang, and K. Grozinger, Tetrahedron Lett., 41, 4713 (2000).
[11] G. Cabarrocas, M. Ventura, M. Maestro, J. Mahía, and J. M. Villalgordo, Tetrahedron Assymetry, 11, 2483 (2000).
[12] D. B. Grotjahn, S. Van, D. Combs, D. A. Lev, C. Schneider, M. Rideout, C. Meyer, G. Hernandez, and L. Mejorado, J. Org. Chem., 67, 9200 (2002).
[13] B. C. Bishop, K. M. J. Brands, A. D. Gibb, and J. D. Kennedy, Synthesis, 43 (2004).
[14] For recent reviews see: [a] B. Stanovnik and J. Svete, Chem Rev., 104, 2433 (2004); [b] J. Svete, Monatsh. Chem., 135, 629 (2004); [c] J. Svete, J. Heterocycl. Chem., 39, 437 (2002); [d] B. Stanovnik and J. Svete, Synlett, 1077 (2000); [e] B. Stanovnik and J. Svete, Targets in Heterocyclic Systems, 4, 105 (2000); [f] B. Stanovnik, J. Heterocycl. Chem., 36, 1581 (1999); [g] B. Stanovnik, Molecules, 1, 123 (1996); B. Stanovnik, "The Synthesis of Heterocyclic Systems" in "Progress in Heterocycl. Chem.", ed. by H. Suschitzky and E. F. V. Scriven, Vol 5, Pergamon Press, Oxford 1993, pp. 34-53.
[15] L. Selič, R. Jakše, K. Lampič, L. Golič, S. Golič Grdadolnik, and B. Stanovnik, Helv. Chim. Acta, 83, 2802 (2000).
[16] L. Selič and B. Stanovnik, Tetrahedron, 57, 3159 (2001).
[17] R. Jakše, V. Krošelj, S. Rečnik, G. Soršak, J. Svete, B. Stanovnik, and S. Golič Grdadolnik, Z. Naturforsch., 57b, 453 (2002).
[18] L. Selič, S. Rečnik, and B. Stanovnik, Heterocycles, 58, 577 (2002).
[19] R. Jakše, J. Svete, B. Stanovnik, and A. Golobič, Tetrahedron, 60, 4601 (2004).
[20] J. Westman and R. Lundin, Synthesis, 1025 (2003).
[21] P. Čebašek, J. Wagger, D. Bevk, R. Jakše, J. Svete, and B. Stanovnik, J. Comb. Chem., 6, 356 (2004).
[22] S. Pirc, D. Bevk, S. Golič Grdadolnik, and J. Svete, ARKIVOC (XIV), 37 (2003).
[23] G. Menozzi, L. Marti, and P. Schenone, J. Heterocycl. Chem., 24, 1669 (1987).
[24] J. R. Beck and M. P. Lynch, J. Heterocycl. Chem., 24, 693 (1987).
[25] A. Hanzlowsky, B. Jelenčič, S. Rečnik, J. Svete, A. Golobič, and B. Stanovnik, J. Heterocycl. Chem., 40, 487 (2003).
[26] U. Bratušek, S. Rečnik, J. Svete, L. Golič, and B. Stanovnik, Heterocycles, 57, 2045 (2002).
[27] U. Bratušek, A. Hvala, and B. Stanovnik, J. Heterocycl. Chem., 35, 751 (1998).
[28] L.Pizzioli, B. Ornik, J. Svete, and B. Stanovnik, Helv. Chim Acta, 81, 231 (1998).
[29] U. Bratušek, A. Meden, J. Svete, and B. Stanovnik, ARKIVOC (V), 77 (2003).
[30] U. Grošelj, A. Drobnič, S. Rečnik, J. Svete, B. Stanovnik, A. Golobič, N. Lah, I. Leban, A. Meden, S. Golič Grdadolnik, Helv. Chim Acta, 84, 3403 (2001).
[31] A. Pollak and M. Tišler, Tetrahedron, 22, 2073 (1966).
$[32] \quad$ B. Stanovnik and M. Tišler, Tetrahedron, 23, 387 (1967).
[33] B. Stanovnik, A. Krbavčič, and M. Tišler, J. Org. Chem., 32, 1139 (1967).
[34] B. Stanovnik, M Tišler, M. Ceglar, and V. Bah, J. Org. Chem., 35, 1138 (1970).
[35] B. Stanovnik and M. Tišler, "Azolo and Azynopyridazines and some Oxa and Thia Analogues." In "Condensed Pyridazines including Cynolines and Phthalazines", ed. by R. N. Castle, John Wiley and Sons, New York, 1973, pp761-1056.
[36] R. Toplak, J. Svete, B. Stanovnik, and S. Golič Grdadolnik, J. Heterocycl. Chem., 36, 225 (1999).
[37] G. Soršak, A. Sinur, L. Golič, and B. Stanovnik, J. Heterocycl. Chem., 32, 921 (1995).
[38] R. Toplak, M. Zucchiati, S. Golič Grdadolnik, and B. Stanovnik, Heterocycles, 50, 853 (1999).
[39] L. Jukić, S. Rečnik, S. Golič Grdadolnik, J. Svete and B. Stanovnik, J. Heterocycl. Chem., 38, 859 (2001).
[40] L. Selič, L. Jukić, G. Soršak, S. Golič Grdadolnik, and B. Stanovnik, Synth. Commun., 31, 1743 (2001).

[^0]: ${ }^{\text {a }}$ From compound 14 , by method $A ;{ }^{b}$ From compound 14 , by method $B ;{ }^{c}$ From compound 33 ; ${ }^{d}$ From compound $\mathbf{3 5}$; ${ }^{e}$ Calcd. for $47+1 / 2 H_{2} \mathrm{O}$;
 ${ }^{\mathrm{f}}$ From compound 31; ${ }^{\mathrm{g}}$ From compound 32; ${ }^{\mathrm{h}} \mathrm{M}^{+}(\mathrm{M} / \mathrm{Z})$.

